8,066 research outputs found

    Some initial results and observations from a series of trials within the Ofcom TV White Spaces pilot

    Get PDF

    A Congeries of Absorption Cross Sections for Wavelengths Less Than 3000 degrees Angstrom

    Get PDF
    The absorption of ultraviolet solar radiation is of prime importance for the study of planetary atmospheres.The absorption coefficients of most of the atmospheric gases have been measured by a number of investigators, but the results are scattered throughout the literature. This report contains a detailed collection of absorption cross sections of the gases listed in Table 1 for wavelengths less than 3000 degrees angstroms. The data on each gas are given together with a historical sketch of the study of the gas and a list of the pertinent references. Also included is a study of the absorption and photoionization coefficients of the major atmospheric gases at intense solar emission lines

    Partitioning Method for Emergent Behavior Systems Modeled by Agent-Based Simulations

    Get PDF
    Used to describe some interesting and usually unanticipated pattern or behavior, the term emergence is often associated with time-evolutionary systems comprised of relatively large numbers of interacting yet simple entities. A significant amount of previous research has recognized the emergence phenomena in many real-world applications such as collaborative robotics, supply chain analysis, social science, economics and ecology. As improvements in computational technologies combined with new modeling paradigms allow the simulation of ever more dynamic and complex systems, the generation of data from simulations of these systems can provide data to explore the phenomena of emergence. To explore some of the modeling implications of systems where emergent phenomena tend to dominate, this research examines three simulations based on familiar natural systems where each is readily recognized as exhibiting emergent phenomena. To facilitate this exploration, a taxonomy of Emergent Behavior Systems (EBS) is developed and a modeling formalism consisting of an EBS lexicon and a formal specification for models of EBS is synthesized from the long history of theories and observations concerning emergence. This modeling formalism is applied to each of the systems and then each is simulated using an agent-based modeling framework. To develop quantifiable measures, associations are asserted: 1) between agent-based models of EBS and graph-theoretical methods, 2) with respect to the formation of relationships between entities comprising a system and 3) concerning the change in uncertainty of organization as the system evolves. These associations form the basis for three measurements related to the information flow, entity complexity, and spatial entropy of the simulated systems. These measurements are used to: 1) detect the existence of emergence and 2) differentiate amongst the three systems. The results suggest that the taxonomy and formal specification developed provide a workable, simulation-centric definition of emergent behavior systems consistent with both historical concepts concerning the emergence phenomena and modern ideas in complexity science. Furthermore, the results support a structured approach to modeling these systems using agent-based methods and offers quantitative measures useful for characterizing the emergence phenomena in the simulations

    Accommodation requirements for microgravity science and applications research on space station

    Get PDF
    Scientific research conducted in the microgravity environment of space represents a unique opportunity to explore and exploit the benefits of materials processing in the virtual abscence of gravity induced forces. NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. A study is performed to define from the researchers' perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. The accommodation requirements focus on the microgravity science disciplines including combustion science, electronic materials, metals and alloys, fluids and transport phenomena, glasses and ceramics, and polymer science. User requirements have been identified in eleven research classes, each of which contain an envelope of functional requirements for related experiments having similar characteristics, objectives, and equipment needs. Based on these functional requirements seventeen items of experiment apparatus and twenty items of core supporting equipment have been defined which represent currently identified equipment requirements for a pressurized laboratory module at the initial operating capability of the NASA space station

    Spectrum sharing and cognitive radio

    Get PDF

    Quantum Kinetic Theory III: Simulation of the Quantum Boltzmann Master Equation

    Get PDF
    We present results of simulations of a em quantum Boltzmann master equation (QBME) describing the kinetics of a dilute Bose gas confined in a trapping potential in the regime of Bose condensation. The QBME is the simplest version of a quantum kinetic master equations derived in previous work. We consider two cases of trapping potentials: a 3D square well potential with periodic boundary conditions, and an isotropic harmonic oscillator. We discuss the stationary solutions and relaxation to equilibrium. In particular, we calculate particle distribution functions, fluctuations in the occupation numbers, the time between collisions, and the mean occupation numbers of the one-particle states in the regime of onset of Bose condensation.Comment: 12 pages, 15 figure
    • …
    corecore